Назустріч один одному рухаються два потяги, початкова відстань між якими 1 км. Перший потяг рухається рівноприскорено в напрямку координатної осі з початковою швидкістю 36 км/год і прискоренням 2 м/с^2. Інший потяг, початкова швидкість руху якого 54 км/год, гальмує з постійним прискоренням, модуль якого 1 м/с^2. Де й коли зустрінуться потяги?

Виберемо позитивним напрямком осі координат напрямок руху першого потяга і запишемо умову в одиницях СІ.

Дано:
S=1000\;м
v_{01}=10\;\text{м/с}
a_1=2\;\text{м/с}^2
v_{02}=-15\;\text{м/с}^2
a_2=1\;\text{м/с}^2
Знайти: t_з,\;x_з

Запишем рівняння залежності координати потягів від часу. Приймемо за початок відліку початкову координату першого потяга, тобто x_{01}=0 м, тоді початкова координата другого потяга x_{02}=1000 м

Рівняння руху першого потяга: 

x_1=x_{01}+v_{01}t+\frac{a_1t^2}{2}       (1)

Оскільки x_{01}=0           x_1=v_{01}t+\frac{a_1t^2}{2}         (2)

Рівняння руху другого потяга:

x_2=x_{02}+v_{02}t+\frac{a_2t^2}{2}        (3)

У момент зустрічі потягів їх координати мають бути однакові, тоді (3)=(2)

x_{02}+v_{02}t+\frac{a_2t^2}{2}=v_{01}t+\frac{a_1t^2}{2}        (4)

Підставимо дані з умови.

1000-15t+\frac{1*t}{2}=10t+\frac{2t^2}{2}          (5)

0,5t^2+25t-1000=0        (6)

t\approx 26,2\;c       (7)

Здавалося би знайшли час зустрічі. Але давайте перевіримо як буде себе почувати другий потяг через 26,2 секунди. 

Залежність швидкості другого потяга від часу можна записати формулою

v_2(t)=v_{02}-a_2t       (8)

v_2(t=26,2)=-15+1*26,2=11,2 м/с        (9)

Опоньки!   Швидкість змінила знак з мінуса на плюс! Другий потяг через такий час уже їде у зворотньому напрямку!  Стоп! Не допустим аварії!  Потяг має просто зупинитися, але не їхати назад.  Тоді знайдемо момент часу, коли другий потяг зупиниться.

v_2=0        v_2=v_{02}+a_2t_2       0=-15+1*t_2         (10)

t_2=15 c

Таким чином, другий потяг зупиниться через 15 секунд. 

У цей момент часу його координату можемо визначити, підставивши в рівняння (3) час 15 секунд.

x_2(t=15)=1000-15*15+\frac{1*15^2}{2}=887,5 м       (11)

Ось ця координата і буде координатою зустрічі потягів.  Потяги зустрінуться на відстані 887,5 метрів від початкового положення першого потяга. 

x_з=887,5

Тепер знайдемо час, за який цю відстань проїде перший потяг.  Це і буде час зустрічі потягів. 

Підставимо значення координати і вихідні дані у рівняння (2) і знайдемо час зустрічі.

887,5=10t_з+\frac{2t_з^2}{2}         (12)

t_з^2+10t_з-887,5=0        (13)

t_з\approx 25,2 с

Відповідь: потяги зустрінуться через 25,2 секунди з моменту початку відліку у точці, розташованій на відстані 887,5 метрів від положення першого потяга в момент початку відліку часу.

А зараз покажемо рішення задачі графічно.   Побудуємо графіки залежності координат потягів від часу. 


Голубим кольором графік для друго потяга, а жовтим - для першого. 

Дійсно, точка перетину графіків у момент часу 26,2 секунди.  Але зверніть увагу на те, що спочатку значення координати другого потяга зменшувалося від початкового 1000 метрів, потім у момент часу 15 секунд другий потяг має мінімальне значення координати 887,5 метрів, а потім значення координати починає зростати. Як ми і говорили вище, ніби-то потяг поїхав назад.  Але фіксуємо мінімальне значення координати другого потяга на графіку (це момент його зупинки) і проводимо від цього значення горизонталь до перетину з графіком для першого потяга. Від точки їх перетину опускаємо вертикаль на вісь часу. Маємо час зустрічі t_з=25,2 c


Буду вдячний небайдужим гостям сайту за відгук у коментах. Ваші відгуки надихають далі працювати над наповненням сайту. Дякую.



Коментарі

  1. Відповіді
    1. Радий бути корисним, звертайтесь у разі потреби. буду радий допомогти.

      Видалити
  2. Відповіді
    1. Тепер точно правильно. Я вніс поправки і детальні роз'яснення. Також додав графічний спосіб розв'язання для кращого розуміння цієї хитрої задачі.

      Видалити

Дописати коментар

Тут можна залишити коментар або звернення