Як зміниться сила електростатичної взаємодії між двома точковими зарядами при перенесенні їх з вакууму в діелектрик з діелектричною проникністю ε = 80 за умови, що відстань між ними не змінилась?
Дано:
\varepsilon_2=80
R_1=R_2
Знайти: \frac{F_1}{F_2}
Сила взаємодії між електричними зарядами визначається законом Кулона.
F=\frac{q_1q_2}{4\pi\varepsilon_0\varepsilon R^2}
де q_1,\;q_2,\;\varepsilon_0,\;\varepsilon - відповідно величина першого і другого заряду, електрична стала, відносна діелектрична проникність середовища.
Позначимо відстань між зарядами R_1=R_2=R
Таким чином:
F_1=\frac{q_1q_2}{4\pi\varepsilon_0\varepsilon_1 R^2}
F_2=\frac{q_1q_2}{4\pi\varepsilon_0\varepsilon_2 R^2}
\frac{F_1}{F_2}=\frac{\frac{q_1q_2}{4\pi\varepsilon_0\varepsilon_1 R^2}}{\frac{q_1q_2}{4\pi\varepsilon_0\varepsilon_2 R^2}}
\frac{F_1}{F_2}=\frac{\varepsilon_2}{\varepsilon_1}
Діелектрична проникність вакуума \varepsilon_1=1
\frac{F_1}{F_2}=\frac{80}{1}=80
Відповідь: сила електростатичної взаємодії між двома точковими зарядами при перенесенні їх з вакууму в діелектрик з діелектричною проникністю ε = 80 зменшиться у 80 разів.
Коментарі
Дописати коментар
Тут можна залишити коментар або звернення